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Controlling chaos by negative feedback of subharmonic components

R. Meucci, A. Labate, and M. Ciofini
Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Florence, Italy

~Received 8 May 1997!

In this paper we present a control technique for stabilizing chaotic motion to periodic orbits in a CO2 laser
with electro-optic feedback. The control method is based on negative feedback of subharmonic components of
the laser intensity signal. A detailed analysis, performed using the four-level model for the CO2 laser, allows
us both to reproduce the experimental features and to compare our method with the time-delayed autosynchro-
nization method introduced by Pyragas@Phys. Lett. A170, 421 ~1992!#. @S1063-651X~97!13809-0#

PACS number~s!: 05.45.1b, 42.50.Lc, 42.55.Lt
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INTRODUCTION

The possibility of directing chaotic dynamics to period
orbits or steady states by applying small amplitude pertur
tions has opened new perspectives in the theory and app
tions of nonlinear dynamics. The interest in this field w
increased after the development of ‘‘tracking’’ and ‘‘targe
ing’’ algorithms. Tracking algorithms, based on the cont
method proposed by Ott, Grebogi, and Yorke~OGY! @1# and
on other control systems@2#, allow us to follow unstable
fixed points or unstable periodic orbits embedded in differ
dynamical regimes as the control parameter is chan
@3–7#. Targeting procedures deal with the problem to rapi
direct the motion, originated from a given initial conditio
on a chaotic attractor, to a small target region by usin
sequence of small, time dependent changes to one or m
suitable parameters@8,9#.

The aim of the present work is to provide experimen
evidence of stabilization of periodic orbits embedded in
chaotic attractor of an autonomous system, namely a C2
laser with electro-optic regenerative feedback@10#. In this
configuration, the degree of freedom necessary to obs
the transition to chaos is obtained by feeding the laser ou
back to an intracavity electro-optic modulator. An addition
negative feedback, obtained after a selective filtering of
subharmonic components present in the chaotic laser in
sity, is used to direct the system towards stable orbits. T
frequency domain approach to control of chaos, at varia
with other methods that require a knowledge of the pha
space topology~as the OGY!, appears particularly suitabl
for systems characterized by fast dynamics, and pres
strong analogies with the time-delayed autosynchroniza
~TDAS! method introduced by Pyragas@11#. The method has
been applied by Bielawskiet al. to a CO2 laser with modu-
lated losses@12#, and several variations have been propos
@13,14#.

The results of our experiment can be reproduced in te
of the so-called four-level model for the CO2 laser, which
has been demonstrated to adequately fit the chaotic dyna
of the CO2 laser with electro-optic feedback@15#.

EXPERIMENTAL RESULTS

The experimental configuration employed in this work
reported in Fig. 1 and it concerns a single mode CO2 laser
561063-651X/97/56~3!/2829~6!/$10.00
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with an intracavity loss modulator driven by a voltageV.
The intensity decay ratek of the cavity depends onV as

k~V!5k0F11k1sin2S p~V2V0!

Vl
D G , ~1!

where k05cT/L ~L51.35 m is the cavity length andT
50.09 is the total transmission coefficient for a single pass!,
k15(122T)/2T, Vl54240 V is the half-wave voltage of
the modulator, andV05100 V an offset accounting for a
small misalignment between the optical axis of the modula
tor crystal and the intracavity polarization direction imposed
by the Brewster windows. The voltageV is obtained through
a feedback loop which includes an HgCdTe detector revea
ing the laser intensity, a preamplifier, and an high-voltag
differential amplifier. A bias voltageB, representing the con-
trol parameter, is finally added toV, which obeys the follow-
ing equation:

V̇52bS V2B1
RI

11aI D , ~2!

whereb5300 kHz is the damping rate of the feedback loop
I is the adimensional laser intensity, andR56.6310210 is
the total gain of the feedback loop. The termaI (a51.2
310213 ) takes into account the nonlinearity of the detec-
tion apparatus.

Once the pump and the gain of the feedback loop ar
selected,B acts as the control parameter of the system. Upo
increasingB, the system passes from a stable point~constant

FIG. 1. Experimental setup.G, diffraction grating; LT, laser
tube; EOM, electro-optic modulator;M , outcoupling mirror;D,
HgCdTe detector;P, preamplifier;A, differential amplifier;B, bias
input; LOG, logarithmic converter;F, washout filter. The dotted
line represents the control feedback loop.
2829 © 1997 The American Physical Society
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FIG. 2. Experimental results.~a! Phase space
plot ~laser intensityI vs feedback voltageV! for
the unperturbed chaotic attractor.~b! Power spec-
trum corresponding to~a!.
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laser output! to a limit cycle through a Hopf bifurcation an
then the chaotic behavior is reached after a sequence of
harmonic bifurcations. The chaotic attractor (B5360 V), re-
ported in Fig. 2~a!, is obtained by plotting the laser intensi
I versus the voltageV. The corresponding broadband pow
spectrum is presented in Fig. 2~b! and it clearly shows the
presence of a peak at a frequencyf '22 kHz, which is close
to that of the limit cycle originated at the Hopf bifurcatio
This feature is crucial for the choice of the control used
select and stabilize periodic orbits contained in the cha
attractor. Apart from the phase-space plot of the attractor
its power spectrum, the chaotic nature is also proved by
evaluation of the correlation dimension of the intensity te
poral signal, estimated with the Grassberger and Proca
algorithm @16# to beD252.1060.04.

The spectral analysis of the chaotic signal suggests
possibility of adopting a control method based on a nega
feedback loop where all the unwanted frequency compon
are transmitted by a selective filter~F in Fig. 1! as correction
signals. The only frequency components not affected by
control loop are the zero frequency~which controls the long
time behavior! and the frequency still evident above th
broad continuum in the chaotic spectrum, corresponding
the cycle to be stabilized. These results have been achi
by means of a selective filter, known also as ‘‘washout
ter’’ @17#, whose transfer function~Fig. 3! matches the above
requirements. The filter input is driven by a signal prop
tional to the laser intensity~Fig. 1!, while the output is fed
back to the negative input of the high voltage different
amplifier. In Fig. 4~a! we report the stabilized orbit of perio
1 when the feedback control loop has been activated. In
der to characterize the control performance, we estimate
relative perturbation introduced as the ratio between the fi
output and the amplified laser intensity~i.e., the ratio be-
tween the two input signals of the high-voltage amplifie!;
since this ratio is roughly 7% we are confident that the s
bilized orbit is only slightly different from that embedded
the chaotic attractor. Note that the filter has been imp
mented with the possibility of tuning the notch point in
range of610% around 23 kHz. However, we have not fou
relevant changes in the control loop performance within
above range.

Finally, if the controller is modified inserting a logarith
mic amplifier ~LOG in Fig. 1! to drive the filter, its perfor-
mances increase, providing stabilization of period-1 or
@Fig. 4~b!# with smaller values of the relative perturbatio
~about 4.5%!. The reasons to employ the logarithmic amp
ub-

ic
d
e
-
ia

e
e
ts

e

to
ed
-

-

l

r-
he
r

-

-

e

it

fier will be clarified in the next section, which is devoted
the analysis of the theoretical model.

The presented measurements allow us to compare
feedback control method to an alternative strategy wh
uses a nonfeedback method, based on the application
small sinusoidal perturbation to the bias voltageB, at fre-
quencies close to the leading frequency of the broadb
chaotic spectrum@18#. In such a case, stabilization o
period-2 and period-4 orbits has been obtained by choo
perturbations with relative amplitudes of the same order
those applied in the case of the feedback method. Howe
it is important to note that with this nonfeedback method
frequencies of the stabilized orbits are locked to the exte
perturbation frequency, in agreement with the theory of
riodic perturbation of autonomous systems@19#. Further-
more, stabilization of the period-1 orbit implies a remarkab
deformation of the orbit itself, which can be no longer ide
tified as that embedded in the chaotic attractor.

THE MODEL

The model is based on the standard four-level scheme
the CO2 laser, which consists of five differential equation
involving the laser intensityI , the populations of the lasing
levels N1 and N2 , and the global populations of the rota
tional manifoldsM1 andM2 @15#. Consequently, the dynam
ics of our system, including the electro-optic feedback,
ruled by the following set of differential equations:

FIG. 3. Amplitude response of the filter as a function of t
frequencyf .
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FIG. 4. ~a! Stabilized orbit~I vs V! of period
1 obtained when the feedback control loop co
sists of only the selective filterC(s) ~linear con-
trol!. ~b! Stabilized orbit of period 1 when the
logarithmic amplifier is added to the feedbac
control loop~nonlinear control!.
-
e

ls

al

a
-
to
b
ot

re
İ 5I @2k~V!1G~N22N1!#,

Ṅ152~zgR1g1!N11G~N22N1!I 1gRM1 ,

Ṅ252~zgR1g2!N22G~N22N1!I 1gRM21g2P,
~3!

Ṁ152~gR1g1!M11zgRN1 ,

Ṁ252~gR1g2!M21zgRN21zg2P,

V̇52bS V2B1
RI

11aI D ,

whereG57.331028sec21 is the field-matter coupling con
stant,gR57.03105 sec21 is the relaxation rate between th
lasing states and the associated rotational manifolds~the en-
hancement factorz510 represents the number of subleve
considered in each manifold!, g158.03104 sec21 and g2
51.03104 sec21 are the relaxation rates of the vibration
states, and the adimensional parameterP53.0631014 repre-
sents the pump. The numerical values of these quantities
deduced from Ref.@15#, except the value of the pump pa
rameterP and the gainR, which have been changed due
the different experimental conditions. In particular, we o
serve that the frequency of the leading cycle of the cha
attractor is around 22 kHz~instead of 38 kHz!, as a conse-
quence of operating at a lower value of the discharge cur
and at higher gain.

It is useful to introduce the following order'1 variables:

x15
G

k0
I , ~4!

x25
G

k0
~N22N1!,

x35
G

k0
~N21N1!,

x45
G

k0
~M22M1!,

x55
G

k0
~M21M1!,
re

-
ic

nt

x65
p

Vl
~V2V0!,

t5tgR .

If we set

f ~x1!5
R̃x1

11ãx1
,

whereR̃5(pk0 /GVl)R and ã5(k0 /G)a, Eqs.~3! can be
rewritten as

ẋ15 k̃0x1@x2212 k̃1sin2~x6!#,

ẋ252G1x222k̃0x2x11gx31x41P0 ,

ẋ352G1x32x51gx21P0 ,
~5!

ẋ452G2x42gx51zx21zP0 ,

ẋ552G2x52zx31gx41zP0 ,

ẋ652b̃x61b̃B02b̃ f ~x1!,

where we set

B05
p

Vl
~B2V0!,

k̃15k1,

k̃05
k0

gR
,

G15
g11g212zgR

2gR
,

G25
g11g212gR

2gR
,

g5
g12g2

2gR
,

P05
g2PG

k0gR
,
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b̃5
b

gR
.

By introducing the transformationw5 log(x1), Eqs. ~5! can
be transformed into the set

ẇ5 k̃0@x2212 k̃1sin2~x6!#,

ẋ252G1x222k̃0x2ew1gx31x41P0 ,

ẋ352G1x32x51gx21P0 ,

ẋ452G2x42gx51zx21zP0 ,

ẋ552G2x52zx31gx41zP0 ,

ẋ652b̃x61b̃B02b̃ f ~ew!. ~6!

Considering Eqs.~6! in the frequency domain (s5 iv), we
can more easily separate the global dynamics in a linear a
a nonlinear block as shown in Fig. 5. In this schematizatio
known as Lur’e representation@20#, L(s) represents the
transfer function of the linear dynamical block. This block
corresponding to the second, third, fourth, and fifth equatio
of Eqs. ~6!, has two inputs, the constant termP0 and the
nonlinear term22k̃0x2ew, and an outputx2 . The two inputs
give a constant outputP8 and a variable outputy, respec-
tively, so that, by superposition, we havex25P81y.

FIG. 5. Logical diagram corresponding to Eqs.~6!.
nd
,

s

The first and the last equations of Eqs.~6! represent the
feedback to the linear block. Note that the variablex2 is not
an accessible quantity in the experiment, while the varia
w, neglecting the nonlinearity of the detection process,
be obtained after a logarithmic amplification of the laser
tensity. In this schematization, the total gain of the feedb
loop R̃ (R̃5133.9) has been splitted in two parts,r andR̃/r ,
wherer 50.1339 is the gain associated to the optical detec
~in series with the preamplifier! andR̃/r 51000 is the gain of
the high-voltage differential amplifier.

The controller structure is reported in Fig. 5 and consi
in the cascade of a nonlinear element for the logarithm
amplification and of a linear element, the selective filter, w
transfer functionC(s). C(s) fulfills the requirements given
in the preceding section, i.e., it has two zeros atv50 and
v5v0 ~the last corresponding to the frequency still pres
in the chaotic spectrum! and a maximum atv0/2. The trans-
fer functionC(s) has the following analytical expression:

C~s!5
ks~s21v0

2!

S s21zv0s1
v0

2

4 D ~s1m!

.

Following our rescaling, the fundamental frequencyf
522.47 kHz corresponds tov050.2016; the other param
eter values arek53.5, z50.7, andm50.8.

Figure 6~a! shows the chaotic attractor of the unperturb
system obtained from the numerical integration of Eqs.~6!
for B5223 V, and Fig. 6~b! shows the stabilized orbit o
period 1 when the controller has been activated. Thus,
model is able to reproduce the main experimental featu
including the value of the relative perturbation necessary
stabilize the period-1 orbit~5%!. This theoretical approach
clarifies the reasons for making feedback of the variablew
instead of x1 . Furthermore, numerical simulations whic
consider only the selective filterC(s) without the nonlinear-
ity of the logarithmic amplification, confirm stabilization o
the period-1 orbit fork50.87. In this case, the relative pe
turbation is 10%, in agreement with the experiment.

For the sake of comparison, in Fig. 6~b! we also report the
stabilized orbit obtained with the TDAS control method.
this case, the controller transfer functionC(s) is

C~s!5Kc~12e2sT!,

whereT531.15 is the delay time~equal to the period of the
orbit to be stabilized! and Kc50.35 is the gain. Although
a-

-

FIG. 6. Numerical results obtained by integr
tion of Eqs. ~6! for B5223 V. ~a! Unperturbed
chaotic attractor.~b! Comparison between the
stabilized orbit of period 1 obtained with the se
lective filtering and with the TDAS method.
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56 2833CONTROLLING CHAOS BY NEGATIVE FEEDBACK OF . . .
from a theoretical point of view the two methods are diffe
ent, it is clear from Fig. 6~b! that they produce quite simila
results. This suggests that the common characteristic
present a zero of the transfer function~Fig. 7! at the fre-
quencyv0 is sufficient to obtain a satisfactory stabilizatio
From Fig. 7 we can note that, at variance with our case,
TDAS transfer function amplitude goes to zero also for
v0 harmonics. This ensures that the stabilized limit cycle
exactly the one of the unperturbed chaotic attractor, and
control signal vanishes when the stabilization is obtain
Anyway, our scheme has the advantage of being m
robust in real systems, because the feedback loop tend
eliminate the high frequency components@21#.

Another important feature of our method concerns the
sition of the controller in the logical scheme~Fig. 5!. If the
controller is inserted in parallel with the integrator block 1s,
its effects can be easily predicted@21,22#. Here, the only
accessible point to insert the filter is along the regenera

FIG. 7. Comparison between the transfer functionC(s) in the
case of selective filtering~solid line! and in the case of TDAS
~dashed line!.
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feedback loop, between the detector and the high volt
differential amplifier. The transfer function between the
two points before the insertion of the filter isG(s)51.

If, for simplicity, we consider only the filterC(s) ~in such
a case the controller is linear!, the insertion of the contro
implies the modification of the transfer functionG(s) into
G8(s)5@12C(s)#. It can be easily verified thatG8(0)
5G(0)51, G8( j v0)5G( j v0)51, andG8( j v) has a mini-
mum for v5v0/2, which means that the insertion of th
filter determines cancellation of subharmonics. This local
jection of the subharmonic components is sufficient to av
their presence throughout the system, allowing stabilizat
of the period-1 orbit.

CONCLUSIONS

The results of this experiment extend the validity of t
feedback scheme based on the elimination of subharm
components, when the leading frequency of the chaotic sp
trum has been identified. This characteristic makes
method particularly suitable for low-dimensional chao
systems where it is possible, from a preliminary learni
session, to extract the information necessary for selec
filtering in the frequency domain. Such a model-independ
strategy can be easily adapted to a variety of situations,
cluding those characterized by fast dynamics and spa
temporal chaos@23–25#.
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