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Controlling chaos by negative feedback of subharmonic components
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In this paper we present a control technique for stabilizing chaotic motion to periodic orbits in €O
with electro-optic feedback. The control method is based on negative feedback of subharmonic components of
the laser intensity signal. A detailed analysis, performed using the four-level model for thase® allows
us both to reproduce the experimental features and to compare our method with the time-delayed autosynchro-
nization method introduced by Pyragdzhys. Lett. A170, 421(1992]. [S1063-651X97)13809-0

PACS numbeis): 05.45:+b, 42.50.Lc, 42.55.Lt

INTRODUCTION with an intracavity loss modulator driven by a voltaye

The possibility of directing chaotic dynamics to periodic The intensity decay rate of the cavity depends oW as

orbits or steady states by applying small amplitude perturba-

tions has opened new perspectives in the theory and applica- k(V)=kgq
tions of nonlinear dynamics. The interest in this field was

increased after the development of “tracking” and “target-
ing” algorithms. Tracking algorithms, based on the control
method proposed by Ott, Grebogi, and Yofk#GY) [1] and

on other control systemg2], allow us to follow unstable
fixed points or unstable periodic orbits embedded in differen
dynamical regimes as the control parameter is change
[3—7]. Targeting procedures deal with the problem to rapidlyb
direct the motion, originated from a given initial condition
on a chaotic attractor, to a small target region by using

: @

1+ klsinz(w)

Vi

where kg=cT/L (L=1.35m is the cavity length and
=0.09 is the total transmission coefficient for a single pass
ki=(1-2T)/2T, V,=4240V is the half-wave voltage of
he modulator, and/y=100V an offset accounting for a
%}mall misalignment between the optical axis of the modula-
r crystal and the intracavity polarization direction imposed
y the Brewster windows. The voltadeis obtained through
a feedback loop which includes an HgCdTe detector reveal-
sequence of small, time dependent changes to one or moefng the laser intensity, a preamplifier, and an high-voltage
! Hfifferential amplifier. A bias voltagB, representing the con-

suitable parameter[:8,9]. . . . trol parameter, is finally added ¥, which obeys the follow-
The aim of the present work is to provide experlmentaling equation:

evidence of stabilization of periodic orbits embedded in the '

chaotic attractor of an autonomous system, namely a CO i

laser with electro-optic regenerative feedbddk]. In this V= —,B(V—B+

configuration, the degree of freedom necessary to observe

the transition to chaos is obtained by feeding the laser OUtp%hereB=300 kHz is the damping rate of the feedback loop
back to an intracavity electro-optic modulator. An additional, s the adimensional laser intensity, aRd=6.6x 10710 is ’

negative feedback, obtained after a selective filtering of th?he total gain of the feedback loop. The temh (a=1.2
subharmonic components present in the chaotic laser inten; 1013 takes into account the nonlinearity of the detec-
sity, is used to direct the system towards stable orbits. Thiﬁon apparatus.

frequency domain approach to control of chaos, at variance Once the pump and the gain of the feedback loop are

with other methods that require a knowledge of the phaseéelectedB acts as the control parameter of the system. Upon

space topologyas the OGY, appears particularly suitable increasin h tem from le péi tant
for systems characterized by fast dynamics, and presentsC easing, the system passes from a stable p sta

strong analogies with the time-delayed autosynchronization
(TDAS) method introduced by Pyragpkl]. The method has G M
been applied by Bielawslét al. to a CQ laser with modu- f___ LT FoM H___ b’

lated losse$12], and several variations have been proposec

[13,14. :
The results of our experiment can be reproduced in term LOG
of the so-called four-level model for the GQaser, which A B :
has been demonstrated to adequately fit the chaotic dynami X
of the CQ laser with electro-optic feedba¢#s]. oo

: @
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FIG. 1. Experimental setugs, diffraction grating; LT, laser
EXPERIMENTAL RESULTS tube; EOM, electro-optic modulatoiM, outcoupling mirror;D,
HgCdTe detector?, preamplifier;A, differential amplifier;B, bias
The experimental configuration employed in this work isinput; LOG, logarithmic converter=, washout filter. The dotted
reported in Fig. 1 and it concerns a single mode,@&3er line represents the control feedback loop.
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FIG. 2. Experimental result$a) Phase space
plot (laser intensityl vs feedback voltag¥) for
the unperturbed chaotic attract@) Power spec-
trum corresponding téa).
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laser outputto a limit cycle through a Hopf bifurcation and fier will be clarified in the next section, which is devoted to
then the chaotic behavior is reached after a sequence of suthte analysis of the theoretical model.

harmonic bifurcations. The chaotic attract&= 360 V), re- The presented measurements allow us to compare this
ported in Fig. 2a), is obtained by plotting the laser intensity feedback control method to an alternative strategy which
| versus the voltag¥. The corresponding broadband power uses a nonfeedback method, based on the application of a
spectrum is presented in Fig(l® and it clearly shows the small sinusoidal perturbation to the bias voltaBe at fre-
presence of a peak at a frequerfey22 kHz, which is close quencies close to the leading frequency of the broadband
to that of the limit cycle originated at the Hopf bifurcation. chaotic spectrum[18]. In such a case, stabilization of
This feature is crucial for the choice of the control used toperiod-2 and period-4 orbits has been obtained by choosing
select and stabilize periodic orbits contained in the chaotiperturbations with relative amplitudes of the same order as
attractor. Apart from the phase-space plot of the attractor anthose applied in the case of the feedback method. However,
its power spectrum, the chaotic nature is also proved by th# is important to note that with this nonfeedback method the
evaluation of the correlation dimension of the intensity tem-frequencies of the stabilized orbits are locked to the external
poral signal, estimated with the Grassberger and Procaccigerturbation frequency, in agreement with the theory of pe-
algorithm[16] to beD,=2.10+0.04. riodic perturbation of autonomous systerf9]. Further-

The spectral analysis of the chaotic signal suggests thmore, stabilization of the period-1 orbit implies a remarkable
possibility of adopting a control method based on a negativeleformation of the orbit itself, which can be no longer iden-
feedback loop where all the unwanted frequency componentified as that embedded in the chaotic attractor.
are transmitted by a selective filtg¥ in Fig. 1) as correction
signals. The only frequency components not affected by the
control loop are the zero frequen@yhich controls the long
time behavioy and the frequency still evident above the  The model is based on the standard four-level scheme for
broad continuum in the chaotic spectrum, corresponding téhe CG laser, which consists of five differential equations
the cycle to be stabilized. These results have been achievegyolving the laser intensity, the populations of the lasing
by means of a selective filter, known also as “washout fil-levels N, and N,, and the global populations of the rota-
ter” [17], whose transfer functio(Fig. 3) matches the above tional manifoldsM,; andM, [15]. Consequently, the dynam-
requirements. The filter input is driven by a signal propor-ics of our system, including the electro-optic feedback, is

tional to the laser intensityfig. 1), while the output is fed ruled by the following set of differential equations:
back to the negative input of the high voltage differential

amplifier. In Fig. 4a) we report the stabilized orbit of period

THE MODEL

o |
.

AP, (VoudVi)

1 when the feedback control loop has been activated. In or- 10
der to characterize the control performance, we estimate the
relative perturbation introduced as the ratio between the filter
output and the amplified laser intensitye., the ratio be- I —
tween the two input signals of the high-voltage ampljfier : - \\
since this ratio is roughly 7% we are confident that the sta-
bilized orbit is only slightly different from that embedded in e
the chaotic attractor. Note that the filter has been imple- \_
mented with the possibility of tuning the notch point in a r \.
range of=10% around 23 kHz. However, we have not found _/ \-\ /
relevant changes in the control loop performance within the )
above range. o . v L
Finally, if the controller is modified inserting a logarith- 0 1 2 30 40
mic amplifier (LOG in Fig. 1) to drive the filter, its perfor- f(kHz)
mances increase, providing stabilization of period-1 orbit
[Fig. 4(b)] with smaller values of the relative perturbation  FIG. 3. Amplitude response of the filter as a function of the
(about 4.5%. The reasons to employ the logarithmic ampli- frequencyf.
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FIG. 4. (a) Stabilized orbit(l vs V) of period

z z o5 1 obtained when the feedback control loop con-

2% e sists of only the selective filte€(s) (linear con-

2 2 trol). (b) Stabilized orbit of period 1 when the
logarithmic amplifier is added to the feedback
control loop(nonlinear control
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I=1[—K(V)+G(N,—Ny)],

v

X6=y (V=Vo),
N1=—(Zyrt y2)N1+G(N2—Ny) I+ ygMy, .
T=1lYR-
N2=—(Zyr* ¥2)N2—=G(N2—=Ny) I + yrM+ ¥,P, 3  Ifwe set
M1=—(yrT v)M1+ZyrNy, fix)= R,
(x)= 1+ax,’

M=~ (Yr+ ¥2)Mo+2ygNa+2y,P, - _
whereR=(7wky/GV,)R and a=(ky/G) «, EQs.(3) can be
rewritten as

V:_B(V_EH 1+al ~ ~
X1=KoX1[Xo— 1 —kySinf(xe)],
whereG=7.3x10 8sec! is the field-matter coupling con-
stant, yg="7.0xX 10° sec ! is the relaxation rate between the
lasing states and the associated rotational manifgldsen-
hancement factor=10 represents the number of sublevels
considered in each manifoldy, =8.0x 10* sec? and v,
=1.0x10* sec! are the relaxation rates of the vibrational

XZZ _F1X2_2T('0X2X1+ '}/X3+X4+ Po.,
x3=—T1X3— X5+ yXo+ Po, 5

X4= =T pX4— yXs5+ 2%+ 2Py,

states, and the adimensional paraméter3.06x 10" repre- -

; ) L =— —ZXg+ YX4t+
sents the pump. The numerical values of these quantities are X5=~T'aXs =X+ yXa 2P0,
deduced from Ref[15], except the value of the pump pa- . ~ ~ ~

|15), excep e e Xs=— BXo+ BBy~ Bf(x1),

rameterP and the gairkR, which have been changed due to
the different experimental conditions. In particular, we ob-
serve that the frequency of the leading cycle of the chaotic\:Nhere we set
attractor is around 22 kHtinstead of 38 kHg as a conse- -
guence of operating at a lower value of the discharge current BO=V— (B—Vop),
and at higher gain. A

It is useful to introduce the following ordet1 variables:

Elzkl,
G
Xp=—1, 4 ~ ko
Ko ko=—,
YR
G
XZZK_(NZ_NI)' r :71+72+22')’R
0 1 2’yR
G
3= (N2+Ny), r2:—71+7’2+27R
0 2R
G _
Y1i— Y2
Xg=— (My—M,), =
4 kO( 2 l) Y 27R y
G ’}/ZPG
Xs=7— (My+My), = ,
5 ko( 2 1) 0 Kovr
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The first and the last equations of E@6) represent the
feedback to the linear block. Note that the variakjes not
an accessible quantity in the experiment, while the variable
w, neglecting the nonlinearity of the detection process, can
be obtained after a logarithmic amplification of the laser in-
tensity. In this schematization, the total gain of the feedback
loop R (R=133.9) has been splitted in two pantsandR/r,
wherer =0.1339 is the gain associated to the optical detector
(in series with the preamplifigandR/r = 1000 is the gain of
the high-voltage differential amplifier.

The controller structure is reported in Fig. 5 and consists
in the cascade of a nonlinear element for the logarithmic

(EBO amplification and of a linear element, the selective filter, with
+ + transfer functionC(s). C(s) fulfills the requirements given
1---‘—@ @ ={_) @ in the preceding section, i.e., it has two zeroswatO and
' o= wq (the last corresponding to the frequency still present
) ) ) in the chaotic spectrujrand a maximum aby/2. The trans-
FIG. 5. Logical diagram corresponding to E¢8). fer functionC(s) has the following analytical expression:
~ B ks(s?+ w3)
B e C(s)= 5

(s+u)

w
2+ LS+ —
By introducing the transformatiow=log(x;), Egs.(5) can 4

be transformed ino the set Following our rescaling, the fundamental frequendy

=22.47 kHz corresponds tey=0.2016; the other param-
eter values ar&= 3.5, (=0.7, andu=0.8.
Figure §a) shows the chaotic attractor of the unperturbed

\)V:Ak’o[XZ_ l—‘ElSInz(X6)],

Xo=—I'1Xo— 2KoXo€"+ yXg+ X4+ Po, system obtained from the numerical integration of E@S.
o Toxa— Xot +p for B=223V, and Fig. &) shows the stabilized orbit of
X3= 7L aX3™ XsT ¥XoT Fo, period 1 when the controller has been activated. Thus, the

model is able to reproduce the main experimental features,
including the value of the relative perturbation necessary to
stabilize the period-1 orbit5%). This theoretical approach
clarifies the reasons for making feedback of the variable
- - - instead ofx;. Furthermore, numerical simulations which
Xo=~Xo+ fBo— BT(E"). 6) consider only the selective filt&(s) without the nonlinear-

Har ; ; ; ity of the logarithmic amplification, confirm stabilization of
Considering Egs(6) in the frequency domainsciw), we 'Y oF th mic ar ’ :

can more easily separate the global dynamics in a linear arfii€¢ Period-1 orbit fok=0.87. In this case, the relative per-
turbation is 10%, in agreement with the experiment.

a nonlinear block as shown in Fig. 5. In this schematization, . S
known as Lur'e representatiof20], L(s) represents the For the sak_e of comparison, In Fighp we also report the
transfer function of the linear dynamical block. This block, stabilized orbit obtained with the TDAS control method. In

this case, the controller transfer functi@gs) is

X4: _F2X4_ ')/X5+ ZX2+ZPO,

X5=— I yX5— 22X+ yX4+ 2Py,

corresponding to the second, third, fourth, and fifth equation
of Egs. (6), has two inputs, the constant ter}, and the _ _a-sT

: ~ : C(s)=Kc(1-e™?),
nonlinear term-2kyx,€", and an outpux,. The two inputs
give a constant outpu?’ and a variable outpwy, respec- whereT=231.15 is the delay timéequal to the period of the
tively, so that, by superposition, we haxge=P' +y. orbit to be stabilized and K.=0.35 is the gain. Although

0.0 0.0

Filtering

FIG. 6. Numerical results obtained by integra-
tion of Egs.(6) for B=223 V. (a) Unperturbed
chaotic attractor.(b) Comparison between the
stabilized orbit of period 1 obtained with the se-
™ ) lective filtering and with the TDAS method.
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10 feedback loop, between the detector and the high voltage
differential amplifier. The transfer function between these
two points before the insertion of the filter &(s) = 1.

If, for simplicity, we consider only the filte€(s) (in such
a case the controller is lingarthe insertion of the control
implies the modification of the transfer functida(s) into
G'(s)=[1-C(s)]. It can be easily verified thaG’'(0)
=G(0)=1,G'(jwg)=G(jwg) =1, andG’' (jw) has a mini-
mum for o= wy/2, which means that the insertion of the
filter determines cancellation of subharmonics. This local re-
jection of the subharmonic components is sufficient to avoid

J } their presence throughout the system, allowing stabilization

“%0 ‘ 1.0;105 . 2.0;105 . I3.0>I<1o5 4.0x10° of the period-1 orbit.

o(rad/s)

Amplitude (dB)

CONCLUSIONS

FIG. 7. Comparison between the transfer funct®fs) in the
case of selective filteringsolid line) and in the case of TDAS
(dashed ling

The results of this experiment extend the validity of the
feedback scheme based on the elimination of subharmonic
components, when the leading frequency of the chaotic spec-
trum has been identified. This characteristic makes the
method particularly suitable for low-dimensional chaotic
systems where it is possible, from a preliminary learning
ession, to extract the information necessary for selective
filtering in the frequency domain. Such a model-independent

From Fig. 7 we can note that, at variance with our case, thstrategy can be easily adapted to a variety of situations, in-

TDAS transfer function amplitude goes to zero also for aII%IUdIng those characterized by fast dynamics and spatio-

wgy harmonics. This ensures that the stabilized limit cycle istemporal chao$23-25.

exactly the one of the unperturbed chaotic attractor, and the
control signal vanishes when the stabilization is obtained.
Anyway, our scheme has the advantage of being more The authors wish to thank F. T. Arecchi and S. Boccaletti
robust in real systems, because the feedback loop tends (istituto Nazionale di Ottica R. Genesio, A. Tesi, and M.
eliminate the high frequency componeh2q]. Basso(Dipartimento di Sistemi e Informatica of the Univer-

Another important feature of our method concerns the posity of Florence for useful discussions on the method, and F.
sition of the controller in the logical schengEig. 5). If the  Signorini for his relevant contribution to performing the nu-
controller is inserted in parallel with the integrator block,1/ merical simulations. Work partly supported by the coordi-
its effects can be easily predict¢dl,2Z. Here, the only nated project “Nonlinear dynamics in optical systems” of
accessible point to insert the filter is along the regenerativéhe Italian National Council of Research.

from a theoretical point of view the two methods are differ-
ent, it is clear from Fig. @) that they produce quite similar
results. This suggests that the common characteristic t
present a zero of the transfer functidiig. 7) at the fre-
guencywy is sufficient to obtain a satisfactory stabilization.
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